Prepared For:

≈Regional Water Authority

South Central Connecticut Regional Water Authority

A BIOLOGICAL ASSESSMENT OF UPPER LAKE WHITNEY

December 2005

Document No. 6146-028-001

Table of Contents

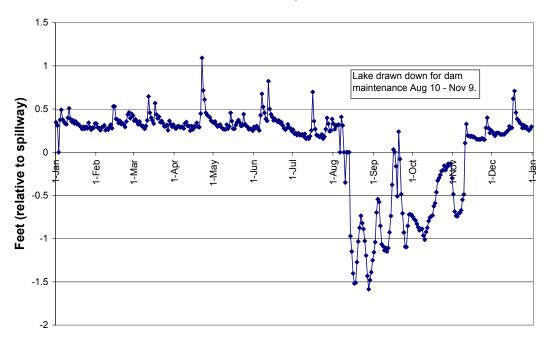
Introduction	1
Methods	5
Results	6
Water Quality	6
Phytoplankton	6
Zooplankton	11
Macrophytes	12
Benthic Macroinvertebrates	20
Fish	21
Discussion	24
References	25

Tables

1	Water quality data for four stations at Lake Whitney collected on June 9, 20057
2	Phytoplankton density (cells/mL) and biomass (μ g/L) for the sample collected in upper
	Lake Whitney on June 9, 20059
3	Zooplankton density (#/L) and biomass (μ g/L) for the sample collected in upper
	Lake Whitney on June 9, 2005 11
4	Physical characteristics (water depth, sediment type), total plant percent cover
	and biovolume, and plant taxa recorded at each transect point during the
	survey (9-June-2005)
5	Taxonomic and ecological (feeding ecology) characterization of each benthic
	macroinvertebrate taxon found in upper lake Whitney on June 9, 2005
6	Results of the gill net fish survey in upper Lake Whitney on June 9, 2005. These data
	do not include visual observations of species that were not collected in the gill net 22

Figures

Water level graph for Lake Whitney during 2000.	3
Water level graph for Lake Whitney during 2001	
Water level graph for Lake Whitney during 2002.	4
Water level for Lake Whitney during 2003.	4
Map of upper Lake Whitney including sampling locations for phytoplankton, zooplankton	n,
	8
and points	14
A map of upper Lake Whitney and corresponding plant cover on June 9, 2005	15
A map of upper Lake Whitney and corresponding plant biovolume on	
June 9, 2005	16
A graphical representation of species composition (number of fish) for the 2004	
and 2005 sampling events.	.23
	 Water level graph for Lake Whitney during 2002. Water level for Lake Whitney during 2003. Water level for Lake Whitney during 2004. Map of upper Lake Whitney including sampling locations for phytoplankton, zooplankton invertebrates and gill net set locations. A map of upper Lake Whitney containing aquatic macrophyte survey transects and points. A map of upper Lake Whitney and corresponding plant cover on June 9, 2005. A map of upper Lake Whitney and corresponding plant biovolume on June 9, 2005. A graphical representation of species composition (number of fish) for the 2004


Introduction

Lake Whitney is one of 15 reservoirs in the South Central Connecticut Regional Water Authority (SCCRWA) system, but water had not been withdrawn for potable supply use since 1991. The new water treatment facility went online in April 2005. Lake Whitney's lower watershed is heavily urbanized and the SCCRWA is implementing a number of watershed management actions to control water quality impacts caused by nonpoint sources of contaminants. In addition, the SCCRWA will be operating the treatment plant in accordance with a Management Plan designed to balance the water needs of the region with those of the environment. The shallow nature of Lake Whitney's upper basin makes it susceptible to substantial exposure of bottom sediments when lake drawdowns exceed two feet.

In response to public concerns raised about the effect of future water withdrawals on the shallow upper basin, the SCCRWA commissioned the upper Lake Whitney Management Study in 2000 to determine the most environmentally sensitive and cost effective way to manage upper Lake Whitney as a water supply while maintaining the ecological and aesthetic quality of the area (Milone and MacBroom, Inc. et al., 2002). The study concluded that watershed management actions should take priority over dredging of accumulated sediments, as dredging would provide minimal water quality benefits while damaging potentially valuable habitat. Hydrologic modeling of water levels under various scenarios conducted as part of the study concluded that drawdowns as a result of public water supply withdrawals will be extremely infrequent. However, extended lake drawdowns of noticeable extent and duration related to maintenance of the dam and various town and state bridges crossing the lake will occur just as they have in the period since August 1991 when the reservoir and the original water treatment plant were removed from service as a public water supply.

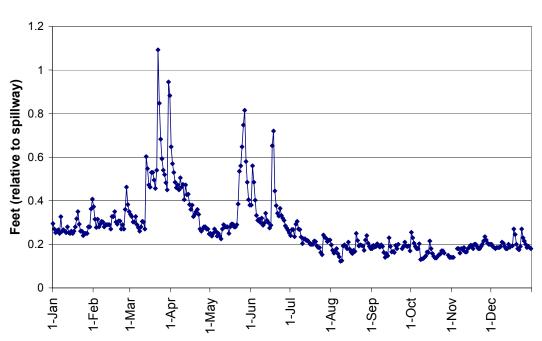

As part of an ongoing effort to document existing conditions and to provide baseline information for ongoing environmental monitoring after water withdrawals resume, the SCCRWA requested that ENSR conduct biological assessments of upper Lake Whitney in 2000 and 2004. This report represents an effort by ENSR to evaluate the biological features of upper Lake Whitney in 2005, during the first year of water withdrawal. Since the 2000 study, the reservoir was drawn down for maintenance activities on three occasions. From August to November 2000, Lake Whitney was drawn down by a maximum of about 1.6 ft for dam maintenance (Figure 1). Water levels were unaffected by SCCRWA operations in 2001 and 2002 (Figures 2 and 3). In October and November 2003 the reservoir was drawn down by a maximum of 3.9 ft, also for dam maintenance (Figure 4). In 2004 the reservoir's water level was again lowered from early July to late August, reaching a maximum drawdown of about 6 feet below spillway elevation (Figure 5).

Figure 1. Water level graph for Lake Whitney during 2000.

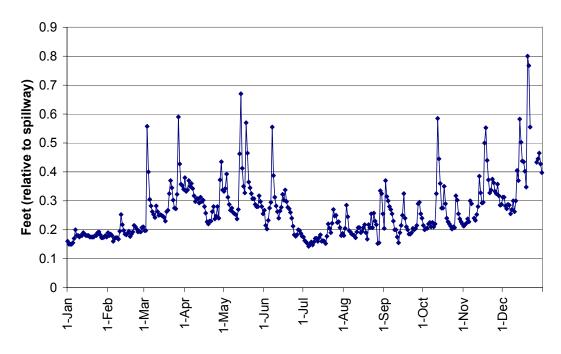

2000 Lake Whitney Lake Level

Figure 2. Water level graph for Lake Whitney during 2001.

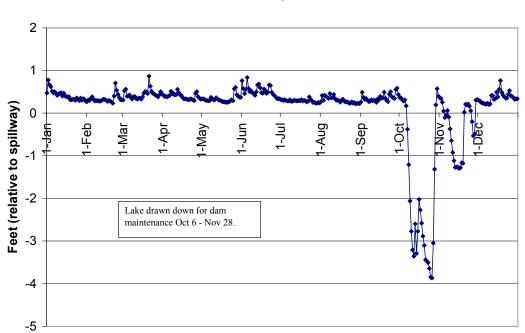

2001 Lake Whitney Lake Level

Figure 3. Water level graph for Lake Whitney during 2002.

2002 Lake Whitney Lake Level

Figure 4. Water level for Lake Whitney during 2003.

2003 Lake Whitney Lake Level

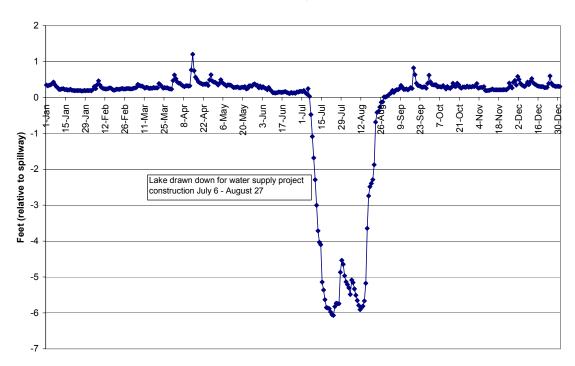


Figure 5. Water level for Lake Whitney during 2004.

2004 Lake Whitney Lake Level

Methods

This assessment incorporates evaluations of phytoplankton, zooplankton, aquatic macrophytes, benthic macroinvertebrates, fish, and water quality in upper Lake Whitney. Phytoplankton were assessed from a whole water sample collected as a near-surface grab sample once on June 9, 2005. Samples were preserved in gluteraldehyde, concentrated by settling, and examined under phase contrast optics at 400X. Cell counts were converted to biomass estimates on a volumetric basis based on cell measurements.

Zooplankton were collected with a 53 micron mesh net towed through up to 30 meters of water on an oblique angle, yielding a sample of about 100 ml that represents nearly 1000 liters of lake water. One sample was collected at the June 9, 2005 phytoplankton sampling site. The sample was preserved and settled in the same manner as the phytoplankton, and examined at 100X under brightfield optics. Individual counts were converted to biomass estimates based on measured organism dimensions.

Macrophytes were mapped by assessing composition and density at numerous points along multiple transects across the lake on June 9, 2005. In addition to recording the species of plants and their overall and relative abundance, water depth and sediment type were also noted. A rating system was used to evaluate cover (two dimensions) and biovolume or biomass (three dimensions). In this system, a 0 represents no plants, while a 5 represents complete cover or filling of the water column. Ratings of 1 through 4 correspond to quartiles in between (i.e., 1-25%, 26-50%, 51-75%, and 76-99%).

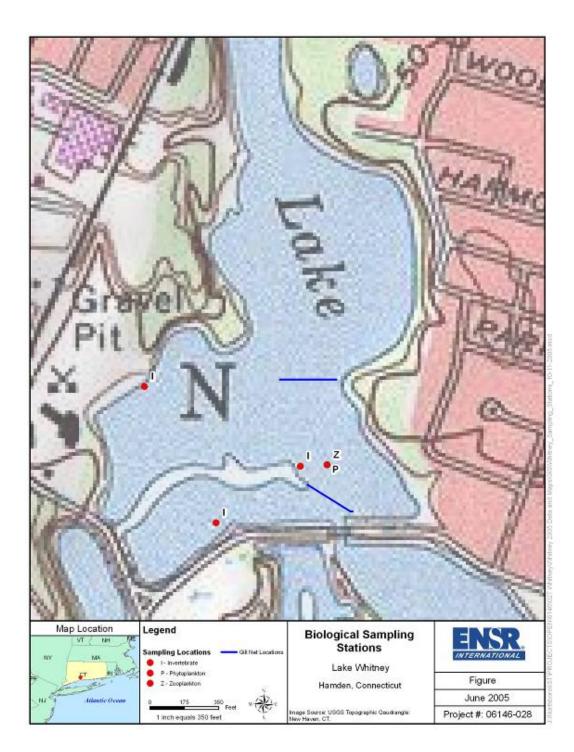
Benthic macroinvertebrates were collected on June 9, 2005 with a D-frame dip net according to Rapid Bioassessment Protocols (EPA 1999). Basically, all habitats within the area of the selected stations are sampled for a timed interval and the collected invertebrates are identified and counted. The dip net was used in water up to 5 ft deep, generally in areas of plants and soft sediments. Invertebrates were sorted, and identified with the help of dichotomous keys.

Fish were assessed on June 9, 2005 by visual observation and through the use of gill nets. Plant densities proved too high for summer seining, and the sediment was too unsteady to allow electroshocking with a backpack unit. Sinking 1.0 inch bar monofilament gill nets were used to sample the fish community in Lake Whitney. Gill nets were set and checked approximately every 2 hours. Each captured fish was measured to the nearest mm, and weighed to the nearest gram before being released.

Results

Water quality as measured on June 9, 2005 using digital meters and water grab test kits, are presented in Table 1.

Date	Depth (meters)	Temp ©	Dissolved Oxygen (% saturation)	Dissolved Oxygen (mg/L)	Turbidity pH (NTUs)		Conductivity (mS/cm)	
6/9/2005	0	25.6	125	10.3	2	7.9	301	
6/9/2005	1	23.7	88	7.3	-	-	-	
6/9/2005	2	22.7	72	6.3	-	-	-	
6/9/2005	3	20.8	96	8.6	-	-	-	


Table 1. Water quality data for four stations at Lake Whitney collected on June 9, 2005.

Phytoplankton

The location of phytoplankton sampling is indicated in Figure 6. Phytoplankton cell counts and biomass estimates are provided in Table 2. Green algae (Chlorophyta) and cryptomonads (Chryptophyta) were the major components of the phytoplankton, although representatives of three other algal divisions were encountered. Unlike the 2004 phytoplankton sampling, blue-greens (more properly cyanobacteria) were present during the 2005 sampling, although they were not bloom-forming types and were found only at low abundance. Diversity and evenness values were similar to the 2004 sampling and spanned the moderate range; however, taxonomic richness was reduced in 2005. Once again the composition of the phytoplankton community suggested high nutrient levels.

Overall cell counts and biomass estimates were low in the June 2005 sample. High flushing would appear to be a dominant influence in this system. Another important factor is probably light, which is reduced below the water surface by high turbidity. This turbidity includes organic remains of algae and vascular plants, but is also a function of visibly high levels of fine suspended inorganic particles in the incoming water. The combination of low light and high flushing limits the accumulation of phytoplankton biomass in Upper Lake Whitney.

Figure 6. Map of upper Lake Whitney including sampling locations for phytoplankton, zooplankton, invertebrates and gill net set locations.

	De <u>nsity (Cells/</u> mL) LW-1		B <u>iomass(µg/</u> L) LW-1
	9-Jun-05		9-Jun-05
axon		Taxon	
BACILLARIOPHYTA		BACILLARIOPHYTA	
Biraphid Pennate Diatoms		Biraphid Pennate Diatoms	
litzschia	32	Nitzschia	25.6
HLOROPHYTA		CHLOROPHYTA	
lagellated Chlorophytes		Flagellated Chlorophytes	
Pandorina	192	Pandorina	19.2
occoid/Colonial Chlorophytes		Coccoid/Colonial Chlorophytes	
Scenedesmus	448	Scenedesmus	44.8
Schroederia	16	Schroederia	40.0
phaerocystis	256	Sphaerocystis	51.2
HRYSOPHYTA		CHRYSOPHYTA	
lagellated Classic Chrysophytes		Flagellated Classic Chrysophytes	
inobryon	32	Dinobryon	96.0
RYPTOPHYTA		СКҮРТОРНҮТА	0
Cryptomonas	432	Cryptomonas	310.4
YANOPHYTA		СҮАЛОРНҮТА	
Inicellular and Colonial Forms		Unicellular and Colonial Forms	
hroococcus	128	Chroococcus	51.2
Density (cells/mL) Summary		Biomass (µg/L) Summary	
Bacillariophyta	32	Bacillariophyta	25.6
hlorophyta	912	Chlorophyta	155.2
hrysophyta	32	Chrysophyta	96
ryptophyta	432	Cryptophyta	310.4
yanophyta	128	Cyanophyta	51.2
Jglenophyta	0	Euglenophyta	0
/rrhophyta	0	Pyrrhophyta	0
otal	1536	Total	638.4
	0.70		0.74
cell Diversity cell Evenness	0.73 0.81	Biomass Diversity	0.71 0.79
	0.81	Biomass Evenness	11/9

Table 2. Phytoplankton density (cells/mL) and biomass (μ g/L) for the sample collected in upper Lake Whitney in June 9, 2005. S-W is Shannon-Wiener diversity index.

Zooplankton

The location of zooplankton sampling is indicated in Figure 6. Zooplankton counts and biomass estimates are provided in Table 3. Zooplankton included protozoans, rotifers, copepods, and cladocerans. Cladocera form the major zooplankton component, but they still fall below densities desirable for phytoplankton biomass control (densities >20 larger individuals/L or biomass >200 μ g/L as indicative thresholds). Taxonomic richness and evenness were moderate and did not vary appreciably between the 2004 and 2005 sampling events. Average body length in 2005 was higher compared to 2004, as were organism density and biomass values. Phytoplankton food resources are of generally good quality, and while phytoplankton quantity is not high, it should support a larger zooplankton community. Rapid flushing of Upper Lake Whitney may minimize accumulation of zooplankton. Predation is also likely to be a strong influence, with abundant planktivorous fish indicated. The very low abundance of zooplankton provides limited food for the fish community and almost no grazing pressure on algae.

	Density (#/L)		Biomass (µg/L)
	LW-1Z		LW-1Z
	6/9/2005	TAXON	6/9/2005
Taxon			
PROTOZOA		PROTOZOA	
Ciliophora	4.0	Ciliophora	0.1
ROTIFERA		ROTIFERA	
Asplanchna	0.1	Asplanchna	0.1
Conochilus	0.9	Conochilus	0.0
Keratella	0.3	Keratella	0.0
COPEPODA		COPEPODA	
Copepoda-Cyclopoida		Copepoda-Cyclopoida	
Cyclops	0.2	Cyclops	0.5
Mesocyclops	0.2	Mesocyclops	0.3
Other Copepoda-Nauplii	0.3	Other Copepoda-Nauplii	0.8
CLADOCERA		CLADOCERA	
Bosmina	8.2	Bosmina	16.0
Ceriodaphnia	7.2	Ceriodaphnia	32.4
Chydorus	0.2	Chydorus	0.2
Daphnia ambigua	1.3	Daphnia ambigua	4.6
Summary Statistics		Summary Statistics	
Density (#/L)		Biomass (µg/L)	
Protozoa	4.0	Protozoa	0.1
Rotifera	1.3	Rotifera	0.2
Copepoda	0.7	Copepoda	1.5
Cladocera	16.9	Cladocera	53.3
Other Zooplankton	0.0	Other Zooplankton	0.0
Total Zooplankton	22.9	Total Zooplankton	55.0
Taxonomic Richness		Mean Length: All Forms	0.42
Protozoa	1	Mean Length: Crustaceans	0.52
Rotifera	3		
Copepoda	3	S-W Diversity Index	0.69
Cladocera	4	Evenness Index	0.66
Other Zooplankton	0		
Total Zooplankton	11		

Table 3. Zooplankton density (#/L) and biomass (μ g/L) for the sample collected in upper Lake Whitney during June 9, 2005.

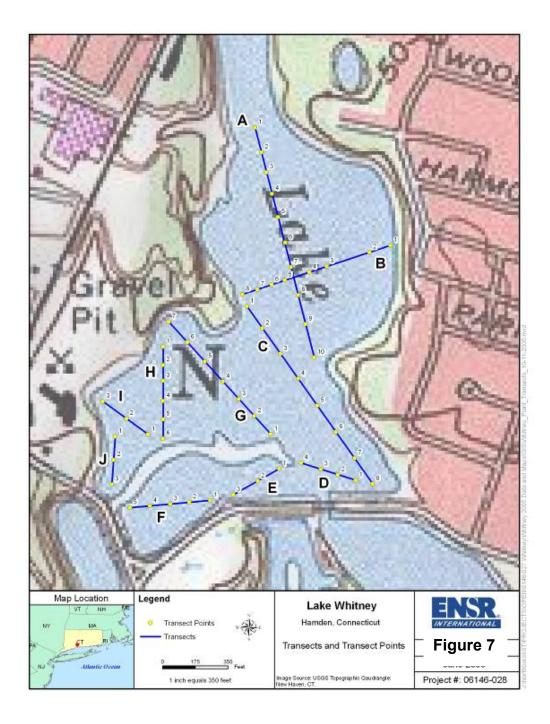
Macrophytes

Macrophytes are a visibly dominant feature of upper Lake Whitney in the summer. Mapping points and transects are shown in Figure 7. Collected macrophyte data are provided in Table 4. Maps of total plant cover and total plant biovolume are presented in Figures 8 and 9.

Cover by macrophytes varied throughout the lake, with the densest cover in the western cove. There was a marked decrease in macrophyte cover in the inlet cove compared to 2004 where some areas in the inlet cove experienced cover between 75 and 100%. As expected, macrophyte coverage was greatest near shore, and decreased with increased distance from the shore. The dominant species in deeper water was filamentous green algae. Biovolume followed a similar pattern, but never exceeded the 50% level, down from the 75% maximum in 2004. The presence of largely floating (e.g., duckweed) or floating leaved (e.g., lilies) species gives an impression of greater plant biomass than really exists in this lake. Areas of densest cover and biovolume contained both waterlilies and the submergent waterweed (*Elodea*) or algal mats. The 2004 lake level drawdown for dam maintenance is the likely cause for decreased cover and biovolume of floating leaved plants observed during the 2005 survey.

Upper Lake Whitney hosts relatively few plant species, with swamp loosestrife being the only aquatic plant noted other than the plants mentioned above. All species present are tolerant of low light or prefer shallow water (where low light is less of an issue), but all are native species. Lack of invasive macrophytes within Upper Lake Whitney is a positive attribute, despite the low macrophyte species count overall.

Duckweed (*Lemna minor*) was found mainly in the northern portion of the lake. This floating vascular plant depends upon the water column for nutrition and is an indicator of high nutrient levels, especially for nitrate. As it is not anchored to the sediment, this plant can be flushed through the system readily, and probably is delivered to upper Lake Whitney on a regular basis.


Waterweed (*Elodea canadensis*) is a rooted submergent vascular plant that tolerates low light and high sediment loads. It is present throughout the entire upper Lake Whitney except for the western coves. Compared to the 2004 survey, the abundance of waterweed in upper Lake Whitney has decreased. While the 2004 drawdown may be partially responsible, natural variability is also a factor in shallow systems such as this.

Waterlilies (*Nymphaea odorata* and *Nuphar variegata*) are mainly peripheral species in upper Lake Whitney, but provide the densest surface cover and dominate the plant assemblage where they occur. Lilies cover nearly all the inlet channel and occupy a major portion of the western cove. Lily cover and abundance is decreased compared to the 2004 survey.

Benthic algal mats are not obvious in upper Lake Whitney, as they are submergent growths at the sediment-water interface. Algal mats are the dominant macrophytes in areas without vascular plants, but do not achieve the densities sometimes associated with nutrient rich sediments in shallow areas. The filamentous green alga *Spirogyra* was especially abundant. Observed blue-green mats included mainly species of *Oscillatoria*, but were not especially abundant or dense in 2005. Low light and high flushing rate are probably major factors in controlling these mats, as with the phytoplankton.

Maximum water depth in upper Lake Whitney is only about 10 ft, with much of the upper basin less than 5 ft deep. Surficial sediments in Upper Lake Whitney are primarily mucks and sands, with some larger rocks and various leaf litter and other woody debris.

Figure 7. A map of upper Lake Whitney containing aquatic macrophyte survey transects and points.

Inlet Cove Western Cove Map Location Legend INTERNATIONAL Macrophyte Cover Macrophyte % Cover 3 0 % 51 - 75 % 5 1 - 25 % 5 76 - 100% Lake Whitney Figure 8 Hamden, Connecticut 20 28-50% 1 inch equals 350 feet rage Source: USGS Topographic Gaudrangle: av Haven, CT Project #: 06146-028

Figure 8. A map of upper Lake Whitney and corresponding plant cover on June 9, 2005.

Figure 9. A map of upper Lake Whitney and corresponding plant biovolume on June 9, 2005.

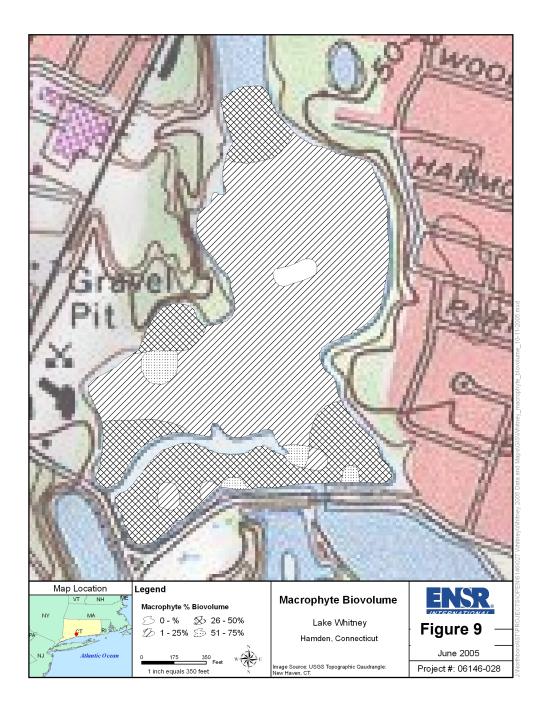


Table 4. Physical characteristics (water depth, sediment type), total plant percent cover and biovolume, and plant taxa recorded at each transect point during the survey (9-June-2005). Plant taxa are reported left to right from the most abundant to the least abundant for each transect point. For full names of plant taxa, sediment type codes, and total plant percent cover and biovolume codes, see notes at the end of table.

4	water depth		total plant		<u>.</u>	
trans. pt. ID	m	ft	sediment	% cover	%	plant taxa (% relative abundance)
<u>рі. ID</u>	m	п	type	cover	010001.	plaint taxa (78 relative abuildance)
A-1	0.6	2.0	mu	3	3	Nod, alg
A-2	0.4	1.3	mu	3	3	Nod, alg
A-3	0.3	1.0	mu	4	3	Nod, Nvaa, Dve, alg
A-4	0.2	0.6	mu	1	1	Nod, Nvaa, alg
A-5	0.3	0.9	mu	2	1	Nvaa
A-6	0.3	1.1	mu	1	1	alg, Eca, Nod, Nvaa
A-7	0.5	1.5	mu	1	1	alg, Nvaa
A-8	0.7	2.2	mu	2	1	alg, Eca, Nod
A-9	1.7	5.5	mu	2	1	Eca, alg, Nod
A-10	2.3	7.5	mu	1	1	alg, Eca, Nod
B-0	0.3	1.1	sa	2	1	Nod, alg
B-1	1.0	3.4	mu	1	1	alg, Nod
B-2	1.0	3.3	mu	1	1	alg, Nod
B-3	0.6	2.0	mu	1	1	alg, Eca
B-4	0.6	2.0	mu	1	1	alg, Eca, Nod
B-5	0.4	1.4	mu, sa	1	1	alg, Eca, Nod
B-6	1.1	3.5	mu	3	2	Eca, alg
B-7	1.1	3.5	mu	3	2	Eca, alg, Nod
B-8	1.5	4.9	mu	1	1	alg, Eca
C-1	1.1	3.6	mu	2	1	alg, Eca, Nod
C-2	1.5	4.9	mu	1	1	alg, Eca
C-3	1.4	4.5	mu	2	1	Eca, alg
C-4	1.7	5.5	mu	2	1	alg, Eca
C-5	1.0	3.4	sa	3	1	alg, Eca
C-6	1.4	4.7	mu	3	1	alg, Eca, Nod
C-7	1.6	5.2	mu	3	1	alg, Eca, Nod
<u>C-8</u>	2.0	6.5	mu	3	1	alg, Eca
D-1	1.7	5.5	mu	2	1	alg, Eca
D-2	1.7	5.6	mu	2	1	alg
D-3	2.6	8.5	mu	1	1	alg, Eca
D-4	1.8	6.1	mu	3	2	Eca, alg, Nod, Lmi, Wco
E-1	2.3	7.5	mu	2	1	alg, Eca
E-2	2.7	9.0	mu	3	2	alg, Eca
E-3	1.3	4.2	sa, ro	2	1	alg, Nod, Lmi
F-1	1.5	5.0	sa, ro	1	1	alg, Nod
F-2	2.2	7.2	mu	3	2	alg, Nod
F-3	2.7	8.8	mu	2	1	alg
F-4	2.2	7.3	mu	2	1	alg, Eca, Nod
F-5	1.5	5.0	mu	3	2	alg, Eca, Nod, Lmi, Wco

Table 4 (continued). Physical characteristics (water depth, sediment type), total plant percent cover and biovolume, and plant taxa recorded at each transect point during the survey.

trans.			total plant			
			sediment	%	%	_
pt. ID	m	ft	type	cover	biovol.	plant taxa (% relative abundance)
~ .				-		
G-1	2.8	9.2	mu	2	1	alg, eca
G-2	2.1	6.9	mu	3	1	alg
G-3	1.7	5.6	mu	2	1	alg
G-4	2.0	6.7	mu	2	1	alg
G-5	1.6	5.2	mu	1	1	alg
G-6	1.0	3.3	mu, sa	3	2	nod, alg, eca
G-7	1.1	3.6	mu	2	2	alg, eca, nod
H-1	1.2	4.0	mu	2	1	alg, nod
H-2	1.3	4.3	mu	3	2	alg, nod
H-3	1.1	3.5	mu	3	2	alg, eca
H-4	0.9	3.1	mu	2	1	alg, eca
H-5	1.1	3.5	mu	2	1	alg
H-6	0.9	3.0	mu	2	2	alg, nod
I-1	0.9	3.0	mu, sa	3	2	eca, nod, alg
I-2	1.2	4.0	mu	3	1	alg, nod
I-3	1.4	4.5	mu	3	1	alg, nod, nva
J-1	1.2	4.0	mu	3	2	alg, nod
J-2	1.2	3.8	mu	3	2	alg, nod
J-3	1.2	4.1	mu	2	2	alg, nod

Notes:

sediment type: **co** - cobble; **gr** - gravel; **ll** - leaf liter; **mu** - muck; **ro** - rock; **sa** - sand plant taxa: **alg** - green algae (Chlorophyta); **cya** - blue-green algae (Cyanophyta)

dve - Decodon verticillatum (swamp loosestrife);

eca - Elodea canadensis (waterweed);

Imi - *Lemna minor* (duckweed);

nod - Nymphaea odorata (fragrant or white-flower waterlily)

nva - Nuphar variegata (yellow-flower waterlily)

wco - Wolfia columbiana (watermeal)

Benthic Macroinvertebrates

Locations of benthic invertebrate sampling are shown in Figure 6. Data for the types of organisms found are provided in Table 5.

Overall low habitat quality (mucky bottom, low density of truly submerged vascular plants) and possibly high fish predation, could limit macroinvertebrate communities in Lake Whitney.

Most of the invertebrate taxa found in Lake Whitney were tolerant of impacted environments and/or opportunistic species (e.g., pulmonate snails; sowbugs, scuds such as *Gammarus* and the mayfly *Caenis*). Lack of large-bodied invertebrate taxa in Lake Whitney suggests possible strong predation by fish. In particular, common carp (abundant in Upper Lake Whitney) is known to cause drastic reductions in invertebrate densities. Accordingly, total macroinvertebrate species diversity was relatively low in 2005. Taxonomic richness in 2005 (14) was lower than in 2004 (18) or 2000 (26), however, the same taxa were abundant in all years.

The macroinvertebrate community of Lake Whitney was characterized by dominance by primary consumers, and a small but diverse assemblage of predators (e.g., damselfly larvae, the Dobsonfly larva *Corydalus*) indicates that Lake Whitney supports multiple trophic levels within the benthic invertebrate community. Overall low invertebrate density, diversity, and body size once more suggest that fish predation may be high in Lake Whitney. In the absence of intense predation, it is possible that a relatively complex benthic food web would develop.

Table 5. Taxonomic and ecological (feeding ecology) characterization of each benthic macroinvertebrate taxon found in Upper lake Whitney on June 9, 2005. For those taxa with multiple feeding mode, primary and secondary modes are given. Generalist primary consumers feed on both living and dead plant tissues with no evident preference. Feeding ecology obtained from several sources, mainly Thorp and Covich (1991), Merrit and Cummins (1995), and direct observations by ENSR staff.

					feeding	g group(s)
phylum or subphylum	class	order or subclass	family	taxon	primary	secondary
Mollusca	Gastropoda	Pulmonata	Physidae	Physa gyrina	generalist	
Mollusca Annelida	Gastropoda Oligochaeta	Pulmonata	Planorbidae	Gyraulus parvus	generalist	
Annelida	Hirudinea	Rhynchobdellida	Glossiphoniidae	Glossiphonia complanata	predator	
Crustacea	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.	generalist	
Uniramia	Insecta	Odonata	Zygoptera	Enallagma sp.	predator	
Uniramia	Insecta	Megaloptera	Corydalidae	Corydalus sp.	predator	detritivore
Uniramia	Insecta	Hemiptera	Corixidae	Palmacorixa sp.	generalist	
Uniramia	Insecta	Coleoptera	Haliplidae	Peltodites sp.	herbivore	
Uniramia	Insecta	Diptera	Chironomidae	Tanypodinae spp.	predator	
Uniramia	Insecta	Diptera	Chironomidae	Chironominae spp.	generalist	
Uniramia	Insecta	Hemiptera	Veliidae			
Uniramia	Insecta	Diptera	Psychodidae			
Uniramia	Insecta	Diptera (pupae)				

Fish

Locations of gill net sets are shown in Figure 6, and fish data are presented in Table 6. In addition to the species listed in Table 6, several species were visually observed, including largemouth bass, common carp and numerous sunfish species. Centrarchids are adept at avoiding gill nets, however, and other sampling was not possible within the physical constraints of the lake and the time allotted for assessment. Common carp appeared to be concentrated in the northern cove; these larger fish are not likely to be captured in 1.0 inch gill nets, but are easily visible in the shallow areas that they frequent in Upper Lake Whitney.

White perch were the most abundant species collected, and also dominated the biomass as seen in Figure 10. However, no common carp were collected in 2004 or 2005, although numerous large specimens were visually observed jumping and swimming in the shallow north cove. Despite lack of captured specimens in 2005, common carp may still dominate fish biomass in the lake as seen in 2000. Five species of fish were captured during the 2005 survey. These included white perch, yellow perch, golden shiner, bluegill and white sucker.

All fish appeared healthy, although a few of the yellow perch were hosting a parasitic fungus. As in 2000 and 2004, no clupeid fishes (e.g., alewife, shad) were captured or observed in upper Lake Whitney, although zooplankton community structure in 2005 is consistent with the presence of alewife (i.e., few individuals, small body size). Other factors could also lead to this structure, including high flushing rate and predation by other planktivorous fishes such as golden shiner.

Upper Lake Whitney supports a substantial warmwater fish community. Coldwater species would not be expected to inhabit Lake Whitney. The unhindered connection to the lower portion of Lake Whitney allows fish to move freely between the lake segments, so rapid repopulation after any times of stressful conditions in upper Lake Whitney is expected. Daily movements in response to food resource availability may also occur. Zooplankton resources in Upper Lake Whitney might constrain planktivorous fish growth, but captured individuals appeared to have average condition factors (length vs. weight). Visually, fish appeared abundant in upper Lake Whitney; shallow depth makes many fish easy to spot. Habitat conditions are not ideal for fish, but are sufficient to sustain a thriving warmwater fish community that would be accessible to piscivorous wildlife, most notably wading birds.

Table 6. Results of the gill net fish survey in upper Lake Whitney on June 9, 2005.	These data do not include visual observations of
species that were not collected in the gill net	

Golden	Shiner	White Perch									Perch	White Sucker	
TL (mm)	Wt (g)	TL (mm)	Wt (g)	TL (mm)	Wt (g)	TL (mm)	Wt (g)	TL (mm)	Wt (g)	TL (mm)	Wt (g)	TL (mm)	Wt (g)
210	95	176	58	212	120	171	66	176	58	193	79	218	131
240	175	165	52	219	133	215	138	209	108	219	111	222	126
245	198	168	55	228	140	195	93	209	97	228	135	228	130
		211	109	161	58	167	62	208	101	206	104	258	196
		219	117	201	99	209	113	219	121	193	84	248	148
		212	108	159	50	158	49	212	109	204	83	219	120
		221	119	209	116	170	61	169	65	182	69	230	135
		159	46	222	138	167	53	168	64	190	69	226	135
		219	128	158	54	175	72	157	56	223	118		
		175	60	161	58	163	59	160	61	194	87		
		164	55	203	104	197	100	206	105	211	103		
		174	62	172	61	223	145	209	121	209	105		
		205	98	162	61	170	68	195	94	208	108		
		188	92	161	51	226	135	172	62	211	80		
		226	113	169	63	200	97	180	71	218	127		
		212	116	158	53	225	132	176	58	192	91		
		158	38	160	48	225	142	159	53	210	109		
		169	60	202	101	228	148	164	58	190	73		
		169	61	228	146	220	138	164	52	192	81		
		184	79	241	188	167	62	214	105	218	113		
		169	58	220	138	170	70	164	62	201	95		
		224	132	160	41	221	143	172	61	205	94		
		206	120	165	61	210	115	160	57	202	89		
		211	120	177	64	160	49	170	68	179	72		
		177	74	154	55	161	58	215	128				
		174	59	158	54	172	64	171	69				
		161	53	169	61	177	77	169	69				
		163	57	198	105	159	60	164	59				
		156	54	174	71	160	52	159	55				
		162	60	168	75	177	77	162	57				
		173	72	184	80	222	126						

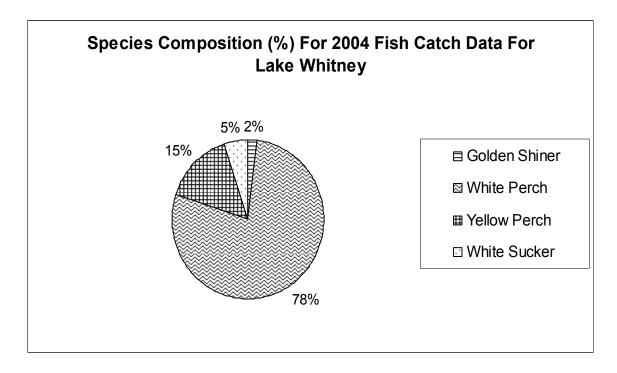
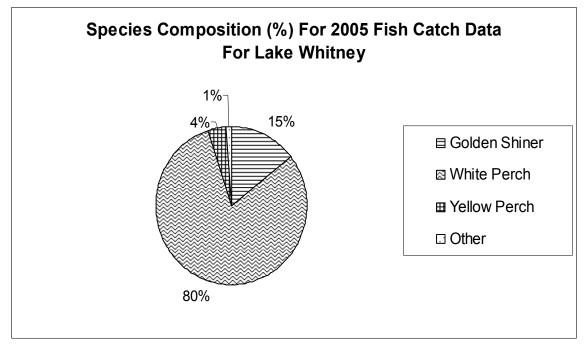



Figure 10. A graphical representation of species composition (number of fish) for the 2004 and 2005 sampling events.

Discussion

Phytoplankton, zooplankton, macroinvertebrate and fish populations assessed in 2005 are very similar to those observed in 2004. A drawdown ranging up to six feet that lasted over a month in summer of 2004 was performed to allow construction at the Lake Whitney dam, and appears to have had slight impacts on the system, mainly with regard to aquatic macrophytes. Reduced coverage and biovolume of plants were evident in June of 2005 after the drawdown of summer 2004, but no plant species were eliminated and coverage was adequate to support fish and wildlife functions. A slight reduction in macroinvertebrate richness was also observed and could be related to drawdown, either directly from the period of dryness or indirectly by effects on the plant community. However, there were no drastic changes in the biological features of upper Lake Whitney.

The drawdown of 2004 was more severe than previous drawdowns and occurred during the prime growing season. Drawdowns are a common management technique for controlling susceptible rooted plant growth (Holdren et al. 2001). Studies on other lakes performed by ENSR have indicated that changes from a single drawdown are usually limited and vegetative communities typically recover from drawdown impacts in about two years, although there is certainly variability based on the plant community and severity and timing of drawdown. The lack of major change in the aquatic wildlife community in Lake Whitney between 2004 and 2005 is consistent with those previous lake drawdown studies. Monitoring in the future may discern any lasting effects to the macrophyte community, but most postulated impacts are transient. The SCCRWA may periodically repeat the data collection performed here to assess any long-term changes in biological communities.

References

- Holdren, C., W. Jones, and J. Taggart. 2001. Managing Lakes and Reservoirs.N. Am. Lake Manage. Soc. and Terrene Inst., in coop. with Off. Water Assess.Watershed Prot. Div. U.S. Environ. Prot. Agency, Madison, WI.
- Merritt R. W., & K. W. Cummins (editors), 1996. An Introduction to the Aquatic Insects of North America, third Edition. Kendall/Hunt Publishing, Dubuque, IA.
- Milone and MacBroom 2002. CH2M Hill, ENSR, Roald Haestad, Inc. Upper lake Whitney Management Study, Mill River Watershed, Hamden, CT. Report prepared for the South Central Connecticut Regional Water Authority, New Haven, CT.
- Thorp, J. H., and A. P. Covic (editors), 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Sand Diego, CA.